17,406 research outputs found

    Simulations of dual morphology in spiral galaxies

    Get PDF
    Gas and stars in spiral galaxies are modelled with the DUAL code, using hydrodynamic and N-body techniques. The simulations reveal morphological differences mirroring the dual morphologies seen in B and K' band observations of many spiral galaxies. In particular, the gaseous images are more flocculent with lower pitch angles than the stellar images, and the stellar arm-interarm contrast correlates with the degree of morphological decoupling.Comment: 4 pages, 4 figures, to appear in Disk of Galaxies: Kinematics, Dynamics and Perturbations, ASP Conf. Series, 200

    The SETI observational plan

    Get PDF
    The SETI (Search for Extraterrestrial Intelligence) Project's primary thrust is to search the microwave region of the spectrum for signals of extraterrestrial intelligent origin. The project will search a well defined volume of search parameter space using existing antennae and a sophisticated data acquisition and analysis system. Two major components are included, the target survey, which will observe at very high sensitivity all attractive stellar candidates within 75 light years of the Sun, and the sky survey, which will observe the entire celestial sphere at a lower sensitivity

    DSN acquisition of Magellan high-rate telemetry data

    Get PDF
    The Magellan Project levied the stringent requirement of a 98 percent high-rate telemetry data capture rate on the Deep Space Network (DSN) during the Magellan Prime Mapping Mission. To meet this requirement, the DSN undertook extensive development of the DSN Telemetry System, as well as extensive DSN operation planning and test and training. In actuality, the DSN substantially exceeded the requirement by achieving a Prime Mapping Mission high-rate telemetry data capture rate of 99.14 percent. This article details the DSN telemetry system development, and DSN operations planning and test and training. In addition, the actual high-rate telemetry data outages are comprehensively presented and analyzed

    Influence of qubit displacements on quantum logic operations in a silicon-based quantum computer with constant interaction

    Full text link
    The errors caused by qubit displacements from their prescribed locations in an ensemble of spin chains are estimated analytically and calculated numerically for a quantum computer based on phosphorus donors in silicon. We show that it is possible to polarize (initialize) the nuclear spins even with displaced qubits by using Controlled NOT gates between the electron and nuclear spins of the same phosphorus atom. However, a Controlled NOT gate between the displaced electron spins is implemented with large error because of the exponential dependence of exchange interaction constant on the distance between the qubits. If quantum computation is implemented on an ensemble of many spin chains, the errors can be small if the number of chains with displaced qubits is small

    ABTRAJ on-site tracking prediction program

    Get PDF
    Computer program, ABTRAJ, provides Deep Space Network tracking stations with the capability of generating spacecraft predictions with on-site computers. The program is comprised of two major sections - the main prediction portion and a trajectory subroutine which spans the desired predict interval with spacecraft ephemeris data written on magnetic tapes
    corecore